The additional competition is great, but it presents a great risk of PCs becoming more locked down. They don't have an open, standardised BIOS/UEFI like x86 systems do.
Booting alternate OSes on ARM systems can be a nightmare. Usually it's straight up not possible.
I don't want PCs to be like smartphones. I don't want locked bootloaders.
EDIT:
FFS people. I know there are some ARM devices that allow booting of non-official OSes. That's why I said usually.
Even for those devices though, they typically have to use non-standardised firmware (you can't just take an OS for device A and use it for device B in the same way you can take an .iso and install it on any x86 machine), and it requires the OEM to want the device to be open.
Your desire to go "umm ackshully..." and be technically correct over a point I never made in the first place is blinding you to the point I was actually making: x86 is fairly open, standardised, and modular by default. ARM isn't. And all it takes is a look at the phone/tablet market to see that OEMs don't want them to be.
I worry, and I don't think unreasonably, that ARM becoming the standard could mean a further erosion of the openness of PCs.
I mean, different use cases yeah? There's certainly a big market for people that just do the basics on their devices, ie email, web browsing, documents/spreadsheets etc that don't need a full blown powerhouse computer, nevermind that they have no clue what an operating system even is nor do they care, as long as they get their memes and cat videos in between work tasks.
I'll bet there will always be an x86 segment of the market for gamers, power users, tinkerers, and the like. Though, that market may unfortunately shrink in the coming years that could lead to vendors abandoning the space, which could lead to fewer choices and higher component prices. On top of which, major venders might see it as an opportunity for lock-in and advertising, so yeah it'll be interesting to see what happens.
The sliver of hope here is that the hacking community has always found ways around proprietary bullshit, and we can only hope and support that those efforts continue, lest we further our race in to a stupid corporate dystopia.
Tbh I really want to get my hands on a snapdragon X laptop at some point just to play around with it. The energy efficiency alone makes me very curious.
I was under the impression that most of the issues around getting Linux to work on them was around driver support. As in: people are absolutely able to install an arbitrary OS, but the functionality is just super janky in most cases. Is that not accurate?
You’re definitely right in terms of arbitrary OS installation, some folks have got Ubuntu running on Lenovo snapdragon laptops recently.
The lack of “portability” though is a bit troubling, it seems each device (tree) has to be manually added, developed, tested, and have an install image created for it, unless I’m missing something. And this will be arduous and potentially problematic for corner cases or small numbers of adopters of a particular machine model (so basically the same as right now I guess).
I don't want PCs to be like smartphones. I don't want locked bootloaders.
I'm sorry to burst your bubble, but since Microsoft made TPMmandatory for Windows 11+, locked down bootloader are on their way.
Basically, TPM allows (Windows) software to validate/verify the integrity of the OS and hardware. This also (could) include the bootloader/bios if Microsoft chooses to do so.
TPM is the equivalent of attestation on Android, which is the exact reason why your Banking App won't work on your rooted/custom Android Phone.
That being said, we should embrace ARM. X86/AMD has 30+ years worth of "history" baked into each ( CISC) chip. This complexity is why your PC draws soooo much power and generates soooo much heat.
Not all ARM chips are in phones, nor are they all locked down like one. There are several ARM devices and SBCs now where switching OSes is as easy as swapping out an SD card. Most do use uboot as a standard and some are even capable of utilizing UEFI.
What made PCs take off was the BIOS war, which occurred because manufacturers were dependent on 3rd party OS's, which were still competing for dominance.
Some SBCs only boot from said SD card though, while some do support more robust media. However, too many images are presuming you boot from SD which is a pita.
With or without Das Uboot, they still rely on board specific firmware (even Uboot is customised for many boards to make it work). OSes that state they do support aarch64, often require to have UEFI on your system so no way they are gonna boot on e.g. your Raspberry Pi.
Add to that, that is unlikely that browsers compiled for arm64 will have feature parity with their x86-64 counterparts. Goodbye Digitale Rights Management, and with that goodbye services like Tidal or Spotify (unless you run an OS that is still supported by their apps).
ARM isn't the x86 solution people like it to be. It's at least as proprietary as x86 and the fact that it's more widely licenced today than x86 is a happy coincidence. ARM licensing can dry up with a change in corporate leadership or a takeover by one of a myriad large corporations. A solution worth cheering would be a good enough open RISC-V core.
This is a sign of ARM approaching the "enough" level. I remember the times when it was actually important to buy the latest PC at least every other year to have enough power to run a basic office suite or similar programs with acceptable speed.
Nowadays, you can staff offices with about any PC off the shelf - it is powerful and big enough to fulfill the needs of the majority of users. Of course there are servers, there are power users, engineers running simulations, and of course gamers who need more power, and who still fuel the cutting edge of PC building. But the masses don't need to be cutting edge anymore. A rather basic machine is enough.
Here comes the ARM: For many years, ARM-based chips were used as SOCs, running anything from washing machines to mobile phones. But they have grown bigger and faster, and I can see them approaching the point that they can cover the basic needs of the average office and home user - which would be a damn big chunk of the market. It would be enough for those needs, but it would be cheaper and in many aspects less troublesome than Intel and AMD. Take for example power consumption in relation to computational power, where ARM is way better than the old and crusty x86 architecture. And less power leads to less cooling requirements, making the machines smaller, more energy efficient, and less noisy.
I can see ARM-based systems approaching this enough level, and I can see that Intel and ARM are deadly afraid of that scenario.
I have wondered for a long time when we'll hit that ceiling (ssd size, cpu power, ram, ...) and I think it's about right now. There are not many exciting PC hardware news nowadays is another sign IMO.
I also windered for a long time why I shouldn't have a mobile phone PC, or more like "where are they?", I have an old Xiaomi redmi note pro 9, 4+4 core with 6+2GB RAM (Whatever that +2 means), 128GB storage and, well, graphics. For not expencive.
I think it will not take long until there is a cell phone/PC hybrid: you plug your cell phone into a base and can use it with a normal desktop interface on a screen with mouse and keyboard. A bit like the Nintendo switch.
I mean, ARM chips have been at that level of performance for at least a decade by now. Normal people's most strenuous activity is watching Youtube, which every cellphone since what? 2005? could do.
power consumption in relation to computational power
The thing is that's very much not the actual situation for most people.
Only Apple really has high performance, very low power ARM chips you can't really outclass.
Qualcomm's stuff is within single-digit percentage points of the current-gen AMD and Intel chips both in power usage, performance, and battery life.
I mean, that's a FANTASTIC achievement for a 1st gen product, but like, it's not nearly as good as it should be.
The problem is that the current tradeoff is that huge amounts of the software you've been using just does not work, and a huge portion of it might NEVER work, because nobody is going to invest time in making it behave.
(Edit: assuming the software you need doesn't work in the emulation layer, of course.) You might get Photoshop, but you won't get that version of CS3 you actually own updated. You might get new games, but you probably won't get that 10 year old one you like playing twice a year. And so on.
The future might be ARM, but only Apple has a real hat in the ring, still.
(Please someone make better ARM chips than Apple, thanks.)___
The problem is that the current tradeoff is that huge amounts of the software you've been using just does not work, and a huge portion of it might NEVER work, because nobody is going to invest time in making it behave.
I agree with the sentiment, but IMO this is a PC and Windows problem. I would also extend this beyond pure comparability. I say this for a few reasons
I lose about 5% charge/day with my laptop asleep. It does wake up very quickly, but 5%/day feels like a lot. At this point, I don't think Microsoft has a strong incentive to really optimize the kernal for efficiency
Historic massive variability in hardware across devices also makes it hard to optimize efficiency, although the current crop of snapdragon x laptops seem to have less variability
One of the strengths of windows is that it can run applications written 20+ years ago fairly reliably. There's a ton of software that's still floating around that hasn't been actively supported in years. I don't see all of these software companies desiring to port their code over, especially without guarantees that the market will adopt ARM (the Apple approach) or until they see the ARM adoption rate go up (the current Windows approach)
All that said, I've had zero issues with emulation so far. I never personally used a M1 max when they launched, but from reports of that era the current Windows experience is at least as good as that.
That is a long shot at best. Games are hungry for power and resources, and adding an emulation layer, even a transpilation system between x86 code and ARM processor will not actually improve the situation.
It's not just the surface devices anymore. In June this year, a fresh wave of ARM powered laptops from a verity of different OEs launched. There are offerings from Dell, HP, Lenovo, Samsung, Asus, etc.
I own a Lenovo Yoga slim 7x Gen 9, which is powered by a Snapdragon X. It certainly checks the "good enough" box. I use it primarily for photo culling/editing (I'm a holdout dedicated camera user). It is more than fit for purpose there, stays cool, is slim, and although I know the fan has come on a few times I wouldn't have known if it wasn't on my lap. When I bought mine, it was also one of the better deals - you could upgrade to 32 GB of memory and a SSD for under $125 in total. The SSD also isn't soldered, but the memory is. The 3k OLED display is amazing, but if you want the ultimate battery sipper it's probably not the best choice. I still get tons of runtime per charge, but am somewhat sad that I lose about 5% charge per day thanks to the laptop not really being off while asleep.
The biggest downside is linxu support is very hit and miss depending on the laptop in question, which means you're tied to windows 11. I don't have the time to tinker with it, so I haven't looked much further into it than this.
It always drives me insane when I have to spec out a $4k system for execs that use it mostly to browse Facebook and LinkedIn. At least the devs get the same systems.
I've seen worse. A group at the university was using the IBM mainframe for basically everything from their terminals. To reduce load on the mainframe, the university spent a load of money to buy a cluster of workstations with crazy specs and software, each one more expensive than a big new car back then.
I visited them shortly after they got those killer machines. For comparison: in our university department, we had green serial terminals connected to an old VAX 11/780. They had those shiny new workstations with GUI on high-resolution (for that time) color monitors. My friend there logged in - and his autostart just opened two terminal sessions on the IBM mainframe, where he did all his work just like before. He was happy that he had the terminals in a windowed environment, though, so he could easily open and handle several sessions on the machine at the same time.
Really they need to work on power usage and temperature of x86 so the chips are easier to use in mobile devices without a fan and dying in 3 hours. Stationary devices seem to be chugging along with x86 comfortably, but the chips are currently impractical otherwise.
The new Intel chips already addressed that, at least for notebook class devices.
Realistically, there wasn't really a reason for Intel and AMD to be super power efficient, simply because there wasn't any competition for quite a while. It took Apple Silicon to show how powerful arm can be and how easy the transition could be.
It seems that they're finally taking that seriously though so it's good to see. They never really had any incentive to put too much effort in making x86 more efficient for consumer devices since their server chips have much, much higher profit margins.
Lunar Lake and AMD's Z1 is a good start and it's interesting to see where this goes.
You're not going to see phones with x86. The architecture just isn't going to scale down like that. Not if you want something faster than a Pentium III.
It actually can, the thing we learned is that the unpleasant bits of x86 scale well, so we spent 30% of the die doing uop decode, but that's now just 1-2% because we blow so much on more registers and cache.
Also we can play games like soft-deprecating instructions and features so they exist, but are stupid slow in microcode.
We used to think only risc could run fast at low power, but our current cisc decoded to risc works fine, Intel just got stupid lazy.
Apple just took all the tradeoffs Intel was too cheap to spend silicon on and turned them to 11, we could have had them before but all the arm guys were basically buying ip and didn't invest in physically optimized designs, but now that tsmc is the main game in town (fallback to gf was nice for price), there's a lot more room to rely on their cell libraries.
Intel got so insanely arrogant, just like Boeing and all the other catastrophic American failures right now, we just need to correct for that and we can be decent again.
LOL this is the biggest sign out there that ARM is making a superior product. Once people start going protectionist, it's time to move on to the new thing.
This means we must band together and wholeheartedly support the architecture. Clearly, it is a ship shaker, and industries don't like ship shakers (even if it would result is a better industry or is better for the consumer, maybe especially if it was better for the consumer).
RISC-V is where ARM was a few years ago. It'll be a ship shaker, too, if it keeps developing at this rate. But, for now at least, we have ARM and clunky old (solid) x86 as the major players.