Pretty sure QC is down at 0,0 right now. They haven't gotten it to work in the way it's been envisioned yet. The theory is there, but until something is quantifiably working, there's basically no hype behind it.
I personally think we’re on the slope of enlightenment - quantum computing no longer attracts as much hype as it used to, but in the background, there’s a lot of interesting developments that genuinely might be very important.
Quantum computers have no place in typical consumer technology, its practical applications are super high level STEM research and cryptography. Beyond being cool to conceptualize why would there be hype around quantum computers from the perspective of most average people who can barely figure out how to post on social media or send an email?
Quantum Computing is still climbing the slope from TT to the Peak of Inflated Expectations. There is still little to no major hype, as its still in "R&D/testing" it is slow, it is expensive (Very) limited due to all the surrounding tech required to make it work like cooling, containment etc..
Compare this to AI.
AI is at and heading down from the Peak towards the Trough of Disillusionment. It was easy (relatively) to implement, easy to evolve as how nVidia did, simply throw more silicon at it. The Hype was easy to generate because even while totally misinformed, media and other people out there thought they could easily sell it. Even though most of what they claimed was turd, it sounded amazing and a game changer even in the early stages, and businesses lapped it up. Now they are feeling the pain, and seeing that there are still major hurdles to get past.
We've progressed a bit further than that. But for anyone interested in actual applications for quantum computers... They'll have to wait. It's research at this point. We're making progress one step at a time. But so far no one has even demostrated we're able to scale those computers to a useful size.
So I'd say we're somewhere close to the origin of the axes. Or on a different graph for research that's still science fiction. Together with nuclear fusion power plants, thorium cars, space ships and hypothetical battery chemistry that'll make our electric cars go 5000 miles and not degrade over time.
I think this graph doesn't have to move left to right, it can also move right to left. On several occasions quantum computing started to move up the "tech trigger" slope, but without any functional applications for the current technology the point slid back down to the left again.
I think the graph needs at least one more demarcated region. After "tech trigger" there needs to be "real world applications". Without real world applications you can never progress past the tech trigger phase.
In chemistry this is the equivalent of Energy of Activation. If a reaction can't get over the big first step, then it can't proceed on to any secondary steps
Either somewhere on the far left, and we'll see some actual breakthrough with major impact in the future which actually gets hyped, or on the far right and it already happened, it was just too niche for anyone other than a specific small group to notice.
You're not going to hear a lot about them the same way people didn't hear about personal computers back in the '60s,, but there are and have been many companies consistently working on improving the accuracy and power of quantum computers.
regular computers were around for decades before being successfully developed into personal machines with commercial utility, quantum computers are kind of in that zone roght mow, big room sized things that have a couple cubits.
but they are real and available, and the field is constantly in development
I think we're still headed up the peak of inflated expectations. Quantum computing may be better at a category of problems that do a significant amount of math on a small amount of data. Traditional computing is likely to stay better at anything that requires a large amount of input data, or a large amount of output data, or only uses a small amount of math to transform the inputs to the outputs.
Anything you do with SQL, spreadsheets, images, music and video, and basically anything involved in rendering is pretty much untouchable. On the other hand, a limited number of use cases (cryptography, cryptocurrencies, maybe even AI/ML) might be much cheaper and fasrer with a quantum computer. There are possible military applications, so countries with big militaries are spending until they know whether that's a weakness or not. If it turns out they can't do any of the things that looked possible from the expectation peak, the whole industry will fizzle.
As for my opinion, comparing QC to early silicon computers is very misleading, because early computers improved by becoming way smaller. QC is far closer to the minimum possible size already, so there won't be a comparable, "then grow the circuit size by a factor of ten million" step. I think they probably can't do anything world shaking.
There are amazing possibilities in the theoretical space, but there hasn't been enough of a breakthrough on how to practically make stable qubits on a scale to create widespread hype
One problem with QC is that besting classical computers has been a moving target, improving exponentially for many years while QC was being researched. It's going to be a long, slow climb up the slope of enlightenment as it reveals its potential.
Inflated Expectations. Most people who are aware of them will still talk about how they're going to destroy crypto. We are very, very far off from the size of QC that could possibly do that. It may not even be feasible to do the quantum juggling act necessary to handle that many qbits. It primarily effects public key crypto, with relatively minor effects on block ciphers and hashes. Plus, we already have post-quantum crypto making its way into TLS and other cryptographic suites.
And don't get me started on the morons who think the NSA already has some super secret breakthrough QC that can already break all crypto. Often from the same sorts of people who (correctly) throw Russell's Teapot at creationists.
Meanwhile, there are far more interesting possibilities that don't need so many qbits. Things like improving logistics or molecular simulation.
You're not going to hear a lot about them, but there are and have been many companies consistently working on improving the accuracy and power of quantum computers and still are.
regular computers were around for 40 years before being successfully developed into personal machines with commercial utility, quantum computers are kind of in that zone roght mow, big room sized things that have a couple cubits.
but they are real and available, and the field is constantly in development