I'm using koboldcpp and ollama. KoboldCpp is really awesome. In terms of hardware it's an old PC with lots of RAM but no graphics card, so it's quite slow for me. I occasionally rent a cloud GPU instance on runpod.io Not doing anything fancy, mainly role play, recreational stuff and I occasionally ask it to give me creative ideas for something, translate something or re-word or draft an unimportant text / email.
Have tried coding, summarizing and other stuff, but the performance of current AI isn't enough for my everyday tasks.
Thanks for the post, super appreciate the posting of other communties. I think this is a great way to grow Lemmy and create discoverability for niche communities, I'll keep that in mind myself on future opportunities.
Have been using llama.cpp, whisper.cpp, Stable Diffusion for a long while (most often the first one). My "hub" is a collection of bash scripts and a ssh server running.
I typically use LLMs for translation, interactive technical troubleshooting, advice on obscure topics, sometimes coding, sometimes mathematics (though local models are mostly terrible for this), sometimes just talking. Also music generation with ChatMusician.
I use the hardware I already have - a 16GB AMD card (using ROCm) and some DDR5 RAM. ROCm might be tricky to set up for various libraries and inference engines, but then it just works. I don't rent hardware - don't want any data to leave my machine.
My use isn't intensive enough to warrant measuring energy costs.
Mostly via terminal, yeah. It's convenient when you're used to it - I am.
Let's see, my inference speed now is:
~60-65 tok/s for a 8B model in Q_5_K/Q6_K (entirely in VRAM);
~36 tok/s for a 14B model in Q6_K (entirely in VRAM);
~4.5 tok/s for a 35B model in Q5_K_M (16/41 layers in VRAM);
~12.5 tok/s for a 8x7B model in Q4_K_M (18/33 layers in VRAM);
~4.5 tok/s for a 70B model in Q2_K (44/81 layers in VRAM);
~2.5 tok/s for a 70B model in Q3_K_L (28/81 layers in VRAM).
As of quality, I try to avoid quantisation below Q5 or at least Q4. I also don't see any point in using Q8/f16/f32 - the difference with Q6 is minimal. Other than that, it really depends on the model - for instance, llama-3 8B is smarter than many older 30B+ models.
I've installed Ollama on my Gaming Rig (RTX4090 with 128GB ram), M3 MacBook Pro, and M2 MacBook Air. I'm running Open WebUI on my server which can connect to multiple Ollama instances. Open WebUI has it's own Ollama compatible API which I use for projects. I'll only boot up my gaming rig if I need to use larger models, otherwise the M3 MacBook Pro can handle most tasks.
That's 128GB RAM, the GPU has 24GB VRAM. Ollama has gotten pretty smart with resource allocation. Smaller models can fit soley on my VRAM but I can still run larger models on RAM.
Picked up an AMD instinct mi25 to try and do just that. Can get easy-diffusion working after some cussing and voodoo. Cannot get rocm to do ANY llm of any kind, feels like a waste of video ram
Also have a tesla p4 that runs most text-to-image models rather well, but have been unsuccessful at any llm either, even oobabooga can’t seem to run on it.
Have given up because the software stack keeps advancing and leaving my hardware behind. I don’t have $3000 for an a100 or $1300 for an mi100 sooo… until the models can run on older/less powerful hardware, I’m probably sitting out of this game. Even though I’d love to be elbow deep in this one.
It has been. I started in this because I liked picking up kick ass enterprise hardware really cheap and playing around with what it can do. Used enterprise hardware is so damn expensive now, it’s cheaper and easier to do everything with consumer products and use the rx6700 in my gaming rig. Just don’t want that running llms and always on.
Llamafile is a great way to get use an LLM locally. Inference is incredibly fast on my ARM macbook and rtx 4060ti, its okay on my Intel laptop running Ubuntu.
I have a Asus laptop with a GTX 1660 ti with 6GB VRAM. I use Jan for LLMs, only the 7B models or lower are small enough for my hardware though, and Krita with the AI Image Generation plugin for image generation, most things work in it, except it fails with an 'out of VRAM' error if I try to inpaint an area more than about 1/8 of my canvas size.
Ive been playing with the nixified.ai project, which packages two web interfaces for LLMs and image generation. Im also looking into Tabby.ml for code assistant as well. I haven't gotten deep, but these all look like promising options for utilitizing a server's hardware but offering the functionality across the network.
I run ollama on my laptop in a VM with open web UI. It works great and I have plenty of models to choose from.
I recently was playing around with TTS and it is pretty solid as well. I am thinking about taking the smaller phi models and throwing it onto my pine64 quartz64 for a portable AI assistant while traveling. The only potential problem is the time it takes to process.