Massive battery deployment stabilizes America's electrical infrastructure, allowing for renewable energy growth and preventing blackouts.
According to data from the Energy Information Administration (EIA), more than 20 gigawatts (GW) of battery capacity have been added to the US electric grid in the last four years. This rapid expansion is equivalent to the production of 20 nuclear reactors and is crucial for averting power disruptions, especially in states that rely significantly on intermittent renewable energy sources such as wind and solar.
The 2 most recent reactors built in the US, the Vogtle reactors 3 and 4 in Georgia, took 14 years at 34 billion dollars. They produce 2.4GW of power together.
Not trying to be a "nuclear shill", but it is worth mentioning from the article you linked:
The 1.8 million solar panels are expected to generate up to 690 MW and they’re co-located with 380 MW of 4-hour battery energy storage (1,400 MWh).
The capacity factor of solar is something around 25%, so that 690 MW solar array (even with batteries) produces about as much energy as ~160 MW nuclear... So 7x faster, but the costs are closer than you suggest. Solar is still cheaper because the O&M costs are minimal, but pretending 690 MW solar + 380 MW battery is equivalent to 1 GW nuclear is a bit disingenuous.
Yes, but one must also factor in the cost of the power source. Is it a solar or wind farm? Is it just off the grid? One way or another, the cost of the power source does factor into this. You know, because nuclear reactors, etc, generate power, but batteries merely store it.
Although renewable + bess still wins according to most recent studies on that matter, cost comparison between nuke and renewable / Bess is not that useful. Assumptions on the longevity of nuke reactors, for example, helps little if the fleet of reactors end up constantly break down and require repairment as in France and Belgium. So lcoe of nuke over long time span is highly uncertain and contingent; even in construction phase nuclear projects already entails higher risk in time and budget overrun than renewables. Plus the positive feedback loop of learning curve, evident in renewable and Bess, is not so visible for nuclear.
What is more useful for sake of current policy discussion is deployment rate and scalability, which renewable plus batteries clearly wins.
I don't think anyone really should have a problem with nuclear being built.
Just as long as the government doesn't have to pay for the construction, or for running costs including subsidising electricity or for the clean up costs. If a company wants to go ahead and pay for it I say let them.
They wouldn't because it would be financially stupid. But I wouldn't be against it.
Turns out nobody cares about the capacity but about the discharge rate. Which is why you'll often hear about how many Gigawatts a certain energy storage project has, and nothing about GWh.
If you think about it for a bit, it does make sense. A lot of solutions would take days to fully discharge, so you might think "oh we have an entire city's energy consumption for a week in some storage", but in reality you could maybe power one neighborhood with that cuz of the discharge rate.