In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?
0, 3 => you can't make a full circle
1, 3.1 => very wobbly circle
2, 3.14 => perfect hole on a beach
3, 3.142 => ??
4, 3.1416 => ??
5, 3.14159 => ??
Old question below
In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.
But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.
My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm
y=(2πx−(2·3.14x))
y=abs(2πx−(2·3.142x))
y=abs(2πx−(2·3.1416x))
y=(2πx−(2·3.14159x))
Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.
The link you provided doesn't even answer the question because it only tells you what NASA uses and then what would happen if you used no decimals at all. So your answer is not only rude, but also lazy and unhelpful.
It is helpful because its the definative answer. There's no authority that would use a higher number of decimals, and their scope is beyond magnitude for any other application.
Never, the highest needed ever in any situation concerning the entirety of humanity is 15.
You're the type of person that needs to be told /s for a comment dripping in sarcasm to understand its sarcasm, right?
Or the type of person that posts in movie communities about narrative foreshadowing as being an Easter egg, right?
A+B=C
If 15 digits is the highest number of used by the one agency responsible for all things concerning the highest need of detail than no, there is never an instance of needing to use all the known digits of Pi.
That isn't what they asked! They asked about when it is tolerable to use fewer digits and at what point the loss of precision becomes a concern again. Your responses have nothing to do with that question.